Ask any eel you know: there’s a lot more to hydropower than just what goes on at the power station – plenty of people (aquatic or otherwise) have a stake in the water involved. So, we called on a bunch of experts at our parent company, Hydro Tasmania, and sister company, Entura, to see how everything works together.
Hydropower (also known as hydro energy or water power) is power, in any form, that comes from harnessing the movement of water. We like to think of a brutish 10th century wheat-crushing gristmill. But for the sake of this article, you can safely assume hydroelectricity is what we're on about.
Hydropower uses moving water to turn a waterwheel or turbine, like wind power uses the wind (think of water as wet wind). Once you’ve got movement, all you need to do is connect it to the machine that needs powering. Back in the day you might’ve hooked it up to the saws in a sawmill or the grinders in a gristmill. The world was your early-machinery oyster.
‘Sounds a little archaic for me’ we hear some of you say. Well, not for long.
Since electricity got popular, we’ve also used hydropower for that – we call it (you guessed it) hydroelectricity. So instead of using the water turbine to power machinery, it’s hooked up to an electricity generator instead. Easy.
Without getting into the nitty gritty details (sorry, nerds), here are some basics on how a hydro energy system comes to watery life.
First, we choose where to put it. While investigating this work we spoke with geomatician Inga (real area of expertise, real name) who likens her role to being the Google Maps of Hydro.
When there’s a question of where something should go, she and the rest of the spatial team (once again, real name) look at all the factors that make a spot right for the job – weather, terrain, infrastructure, you name it. The team also advises if a spot should be avoided for cultural or environmental reasons.
But if you can’t find an Inga, here are a few things to think about:
Here are some of the most common types used for hydroelectric power:
The next step is in the building. And since we humans can’t build a permanent dam directly into water (you win again, beavers), here’s how we usually do it.
Once you’ve got the dam (and the water), you’re halfway there. The next step is running the water through a power station, which is where the electricity is generated.
You could put a power station right by your dam, but sometimes it makes more sense to build it further away. This might be because:
Of course, you’ll need something to help you get the water from the reservoir to the power plant. Depending on the terrain, you can move it using pipes, tunnels, or flumes (which are like open-top canals, on stilts).
Once water gets to the power station, it moves through a water turbine that’s hooked up to a generator. As the turbine spins, electricity is generated. That electricity moves via power lines away from the power plant and where it needs to be.
Did you know?When we think of dams, we often imagine water spilling over the top of them. This isn’t necessarily a good thing though – in those cases, water doesn’t move through turbines, so it’s not being used to electricity generation. Sometimes spills are necessary though, especially to prevent flooding when excess rainfall is expected.
Once you’ve got a hydro energy system up and running, it’s a good idea to get onto someone who can tell you how to use it. Senior resource modeller (and, as a colleague put it to us, ‘knower-of-things’) Roger talked us through how the modelling team helps do that.
For hydroelectricity, they use modelling to try and mimic what’s going to happen with water (we might call it ‘telling the future’). That involves looking at things like water inflow, lake capacity, generating capacity and electricity demand, then using that information to decide how much to generate, and when. That way, you can generate enough to meet people’s needs, while using your resources as efficiently as possible.
The job also involves what’s called scenario analysis, which means testing ideas about how to best use water and assets. That means if someone says ‘could any of these ideas make our station more efficient?’ or ‘should we do our planned outage in January?’, the modelling team helps them figure it out. It left us wishing there was a modelling team for some of my ideas.
Hydro energy systems are like any other piece of machinery – you need someone to take a look at all the parts every now and then. Particularly when that part is a 100-tonne water turbine that can take 3 years to upgrade.
That’s what the Assets and Infrastructure team does, for two reasons: to make sure dams and power stations are safe to operate, and that they’re fit to work efficiently for as long as possible (which is a big part of having a truly renewable outlook).
Sometimes, it means taking things apart to check how they’re going, while others are checked by inspecting and measuring. And (because we live in the future) some even have tech built-in so they can just send a status update digitally – like texting mum to tell her you’re safe instead of her breaking in to check you got home ok.
You probably know from the last time you washed your hands that water isn’t just used for generating electricity. So part of Hydro’s job is to make sure people still get to use it for other things – like fishing, water sports, or just having a nice place to go walking. Given Tasmania’s reputation as an outdoor-activity wonderland, there are huge cultural considerations they need to take into account when managing land and water.
We spoke to Sarah who explained how part of Hydro’s job is balancing the needs of all different types of water users. So if a group needs rapids for rafting, or the right water levels for rowing or fishing, they can move water around for them. It’s a bit like event planning – only you want your venues to be full of water. Even fish.
It’s not just the humans that need taking care of either. Fish and other aquatic critters also rely on water for their day-to-day.
There’s a man at Hydro called David who knows more than your average man about the (enviably well-travelled) eel community, who make their way from Queensland to Tassie and back as part of their lifecycle.
But what happens when a dam gets in the way of general eel behaviour?
Well, you build an elver ladder (elver = baby eel). Elver ladders are like steep, wet ramps that eels scale like little wriggling champions. You’d be right to think ramps are nothing like ladders, which is why we’ve put forward ‘elvervator’ to Hydro as an alternative.
Unlike eels, there are some creatures who spend a lot of time in the same place. That means if their watery world changes too much, there can be problems. We spoke a bit more about this with Cameron (a different one), an environmental planner at Entura.
The main thing Cam talked about was macroinvertebrates – tiny organisms that typically live in the sediment between larger rocks. Because they don’t migrate, they’re a good indicator of the health of a river (the more there are, the less likely the environment has been changed).
The increased water flows caused by hydroelectric power systems can be a problem for macroinvertebrates. That’s because the sand and silt that makes up their habitat can be easily washed away – which has the usual follow-on effects for the local food chain.
So, how do you avoid that erosion? Mainly by monitoring the environment so you can change what you’re doing if it’s having unexpected consequences. Here’s an example from the Gordon River:
When water levels at the riverbanks suddenly decreased, Hydro found it caused a lot more erosion than expected. The good news was that the level-drops were being caused by a system upstream that they could control. So, they put in a ‘ramp-down’ rule, that says if they need to stop the flow, they have to do it more gradually. So far, it’s been effective at limiting erosion at those riverbanks.
This kind of monitoring happens regularly to reduce the impact that hydroelectric power systems have on the environment.
One of the big advantages of hydropower is what’s called pumped hydro, which is kind of like turning hydro energy systems into giant rechargeable (watery) batteries.
It starts out the way you’d expect – water falls, turbines turn, hey presto, electricity. But instead of letting the water flow on, they catch it in another reservoir below the first. That way, they can pump water back up to the reservoir it came from and start the process again.
The clever thing about the system is that the pumping process uses excess electricity – usually during the day when demand is low, and more electricity is coming from solar and wind power. Then, when those other renewable energy resources aren’t available, they’ve got water at the ready to make hydroelectricity.
Pumped hydro is the next big thing on Hydro Tasmania’s list as part of their Battery of the Nation project. Having water stored this way means that even when solar and wind power can’t be generated, we’ve still got a way of generating renewable energy.
Hydro’s also put together a video that explains the pumped hydro process:
You may also like